Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>About Woodside</td>
<td>2</td>
</tr>
<tr>
<td>Health</td>
<td>3</td>
</tr>
<tr>
<td>Safety</td>
<td>4</td>
</tr>
<tr>
<td>Environment</td>
<td>6</td>
</tr>
<tr>
<td>• Greenhouse Gas Emissions</td>
<td>8</td>
</tr>
<tr>
<td>• Flaring Intensity</td>
<td>9</td>
</tr>
<tr>
<td>• Energy Consumption</td>
<td>10</td>
</tr>
<tr>
<td>• Volatile Organic Compounds</td>
<td>11</td>
</tr>
<tr>
<td>• Oxides of Nitrogen</td>
<td>12</td>
</tr>
<tr>
<td>• Other Atmospheric Emissions</td>
<td>13</td>
</tr>
<tr>
<td>• Hazardous and Non-hazardous Waste</td>
<td>13</td>
</tr>
<tr>
<td>• Effluent Discharges</td>
<td>14</td>
</tr>
<tr>
<td>• Drilling Fluid Discharges</td>
<td>15</td>
</tr>
<tr>
<td>• Environmental Incidents</td>
<td>16</td>
</tr>
<tr>
<td>Community</td>
<td>18</td>
</tr>
<tr>
<td>Summary Table of Performance Data</td>
<td>23</td>
</tr>
<tr>
<td>Suggested Background Reading</td>
<td>25</td>
</tr>
</tbody>
</table>

For more information or to provide feedback, please contact:

Woodside Petroleum Ltd.
Woodside Plaza
240 St Georges Terrace
Perth Western Australia 6000
Telephone +61 8 9348 4000
Facsimile +61 8 9214 2777
Email companyinfo@woodside.com.au
Website www.woodside.com.au

ABN: 55 004 898 962
Note: For the purposes of this report, “Woodside” includes Woodside Petroleum Ltd., Woodside Energy Ltd. and their subsidiary companies.
Woodside is an oil and gas exploration and production company, listed on the Australian Stock Exchange. The company has interests in Australia, Africa, the United States and the Middle East and major customer centres in Japan, South Korea, China, Singapore and Dubai.

Woodside has offices in the United Kingdom, Japan, South Korea, Libya, the United States, Mauritania, China and Kenya. Its head office is in Perth, Western Australia.

We published our first health, safety and environment report in April 2005, and this year we have added a community section to reflect our efforts in this area. The report is part of our commitment to openly communicate our performance across our various businesses and covers our performance from 2001 to 2005, with a stronger emphasis on 2005.

We are committed to helping the world meet its energy needs. Woodside strives to improve environmental practices, including working to reduce greenhouse gas emissions as part of the global effort to prevent climate change.

Woodside aims to protect the health and safety of our workers and of the communities in which we operate. We support our employees and these communities in developing themselves to reach their maximum potential. We have a strong view on human rights issues including child and forced labour. We also respect the workplace relations regimes of the nations in which we operate.

Woodside seeks to work with government and community representatives and other relevant stakeholders to promote the view that the significant economic benefit created today, through the extraction of oil and gas reserves, should be invested to create endowment assets for future generations.

We pride ourselves on our financial transparency and accountability – reporting openly and honestly to our shareholders and the marketplace and maintaining a zero tolerance policy in relation to bribery and corruption. Woodside willingly participates in international efforts, such as the Extractive Industries Transparency Initiative, to improve the transparency of payments to governments.

In 2005, Woodside experienced a significant expansion in activities associated with the growth of our businesses. As a consequence, the work hours associated with our activities almost doubled to 23.8 million from 12.9 million in 2004. Data in this report is as reliable as we are able to determine at the time of publication. Some of it is uncertain due to limits in measuring, calculating, interpreting, estimating or comparing data. We have endeavoured to use standard and accepted industry indicators for measuring performance. Environmental and health data for the recently acquired Gryphon Exploration Company in the United States are not contained in this report but will be included in future reports.

We have reported environmental data as the combined result of all of our operated ventures and not just the share attributable to Woodside’s ownership. In many cases, we have also recorded Woodside’s share based on ownership. The data does not include emissions from ventures Woodside does not operate.

Regrettably, people continue to get hurt at work. In 2005, 90 people were injured with 21 of them having to take time off work. When these numbers are considered against the total number of hours worked for the year, they represent a decrease of 30% and 25% respectively compared with 2004. We continue to aspire to “No one gets hurt, no incidents”.

With our health performance, we have seen an increase in the number of work-related illnesses from 5 in 2004 to 11 in 2005. When considering the increase in work hours, this represents an increase in the frequency of work-related illnesses of 25%.

On environmental performance, we had 28 reportable environmental incidents in 2005, a doubling from 2004. Of these, 11 were temporary exceedences of oil-in-water limits that occurred during production upsets, shutdowns and start-ups. We had 9 reportable oil spills, the largest being 135 cubic metres of crude and 26 cubic metres of diesel caused by a rupture in a flowline at the Laminaria field, offshore in the Timor Sea. These oil spills are regrettable. I expect us to do better in 2006.

As expected, greenhouse gas emissions increased in 2005, largely due to increased production at the Woodside-operated gas plant near Karratha in Western Australia. Flaring from offshore facilities, however, decreased by 18%. Oxides of nitrogen emissions were constant due to the installation of technological improvements.

During 2005, we were awarded a Golden Gecko Certificate of Merit for the construction of a new Trunkline Onshore Terminal at the onshore gas plant near Karratha, in Western Australia, and the installation of a trunkline approximately 135 kilometres off the coast of Dampier.

We were also recognised through the 2005 Australian Greenhouse Challenge Award for the North West Shelf Venture’s air emission reduction project, which started at the Karratha Gas Plant in 2004.

This report shows the care and professionalism of Woodside’s staff and contractors on health, safety and environmental management, and our wider contribution to the communities in which we operate. I encourage you to visit the Woodside website where you can view Environmental Impact Statements and Social Impact Assessments for a number of our projects and prospects.

Your feedback on this report is welcome.

Don Voelte Chief Executive Officer

April 2006
Woodside is Australia’s largest publicly listed independent oil and gas exploration and production company and is one of the nation’s most successful explorers, developers and producers of hydrocarbons.

The company is listed on the Australian Stock Exchange (ASX: WPL). It employs more than 3,000 people and has its headquarters in Perth, Western Australia.

Woodside’s core areas of focus are in Australia, Africa and the United States.

In Australia, the company’s producing assets are based on the North West Shelf Venture, Australia’s largest resource development, and oil fields in the Timor Sea and offshore Western Australia. As operator of the North West Shelf Venture, Woodside produces liquefied natural gas, natural gas, liquefied petroleum gas, condensate and oil from fields off the coast of Western Australia. Woodside also has major exploration and development interests in Western Australia, and will be producing oil from its Enfield project later in 2006. It also has significant gas discoveries off Victoria, the greater North West Shelf and the Timor Sea. The Otway gas project in Victoria will commence production later in 2006.

Woodside operates two floating production, storage and offloading facilities (FPSO) in Australia – Northern Endeavour in the Timor Sea and Cossack Pioneer on the North West Shelf. It also operates the Ocean Legend mobile offshore production unit, the floating storage and offtake vessel, Karratha Spirit, and the North Rankin and Goodwyn platforms off Western Australia.

Woodside is operator of Australia’s largest onshore gas plant which is near Karratha in the north-west of Western Australia.

In West Africa, Woodside operates the Chinguetti field, offshore Mauritania. First oil from Chinguetti was produced by the Borge Helene FPSO in February 2006. Woodside also has exploration interests in Libya, Kenya, Sierra Leone, Liberia and the Canary Islands and is a joint venture participant in the Ohanet Project in Algeria.

In the United States, Woodside has interests in deepwater and shallow water areas off the Gulf of Mexico, including the Neptune oil discovery. The acquisition of Houston-based Gryphon Exploration Company in September 2005 has added production and exploration prospects.

Woodside’s website: www.woodside.com.au
Our commitment to the health and well-being of people who work at Woodside is based on our values and our belief that all industry-related diseases are preventable.

People who work at Woodside, including our contractors, are expected to comply fully with our occupational health practices. Health is one of our primary considerations when making decisions and is the primary determinant should we have a conflict between health and other business objectives.

The expansion of Woodside’s activities has resulted in the refocusing of occupational health services to meet the changing health requirements of our operations, including:

- Fitness for work
- Occupational Health
- Public Health.

Woodside’s primary indicator for measuring the health of our workforce is the number of work-related illnesses.

Total recordable occupational illnesses are those that typically result from continuous exposure to a particular work hazard such as noise or heat. Total recordable occupational illness frequency is the number of these illnesses for every million hours worked.

In 2005, we recorded an increase in work-related illnesses from 5 to 11. Measured on a frequency basis, this is an increase from 0.4 to 0.5, or 25%. We continue to increase employees’ awareness of health issues.

In 2005, occupational health initiatives expanded to support Woodside operations around the world. Woodside operates in diverse locations which necessitates a proactive approach so that potential health risks to employees and their families are identified. For example, in Africa special consideration is given to communicable diseases such as malaria, HIV/AIDS, tuberculosis and cholera. Other health initiatives in 2005 included:

- Flu vaccinations
- Skin cancer checks for offshore employees
- Health promotion days
- Heat stress and dehydration in hot climates
- Cardiovascular assessment program.

Woodside provided flu vaccinations during 2005 and the action was timely as a possible precursor to other vaccination programs that would be required should an avian flu pandemic occur. Planning for managing implications of a pandemic has commenced.

Skin cancer checks resulted in the early detection of a melanoma for one employee and the diagnosis of a rare skin disease for another.

Heat stress promotions were conducted in Australia and Mauritania and assisted in reducing the incidence of related symptoms.

The cardiovascular program has been carried out in Australia every three years and in 2005 it was conducted for the fourth time. The results showed the incidence of persons at risk remained consistent with previous studies and wider community statistics.

Case Study

WorkPace

In 2004, there was an increasing incidence of Occupational Overuse Syndrome injuries (previously known as RSI). Occupational Overuse can result in considerable pain and lengthy periods of absence from work. At the very least these injuries can restrict the amount of computing or activities that a person can undertake and in more severe cases can prevent people from working for many years.

This trend was addressed by the implementation of WorkPace, as well as ergonomic assessment of work areas.

WorkPace, a computer software that promotes timely rest and stretch breaks, was loaded onto computers in June 2005. WorkPace is used by many companies throughout the world.

Since its implementation, there have been no recorded cases of occupational overuse injuries of any staff members using WorkPace. Woodside considers WorkPace part of its duty of care to protect staff from illness.
Our aspiration in safety is: “No one gets hurt, no incidents.” We believe that all injuries are preventable and we educate our people and model our behaviour accordingly.

People who work at Woodside, including our contractors, are expected to comply fully with our safety practices. Safety is one of our primary considerations when making decisions and is the primary determinant should we have a conflict between safety and other business objectives.

In 2005 we implemented several initiatives as part of our ongoing safety improvement plan, with the aim of being in the top 25% of global oil and gas companies in safety performance. The improvement in injury rate is such that we are now within the top 50% of global oil and gas companies.

The main initiatives in safety leadership have been to increase the focus of senior managers and to improve the capability of safety resources. Personal safety commitments were developed by selected senior managers in 2005. The leaders detailed what they were going to do to improve safety and how they would demonstrate personal commitment.

We are establishing a set of Golden Safety Rules – a simple set of rules derived from existing laws and regulations, our own standards and the industry’s best practices. The Golden Safety Rules are designed to stop serious injuries and fatalities by communicating key requirements more clearly in areas where we see the greatest risks.

The management of safety in contracts was strengthened by the implementation of a new standard that was developed in 2004. The standard detailed a consistent, simpler process that emphasized better planning earlier in contracting. An improvement in performance and culture was achieved as a consequence.

We also launched the Chief Operating Officer’s Safety Awards to recognise superior leadership, effort and performance by teams within Woodside.

Key Measures

Two indicators – total recordable cases and lost-time injuries – are used in the oil and gas industry to measure historical safety performance.

“Total Recordable cases” the sum of injuries that result in either death, permanent disability, lost work time, restricted duties or medical treatment by a doctor. “Total recordable case frequency” is the number of these injuries for every million hours worked.

“Lost-time injuries” the sum of injuries that result in either death, permanent disability or lost work time. “Lost-time injury frequency” is the number of these injuries for every million hours worked.

We measure these key indicators so we can understand the effectiveness of our safety strategies and management system implementation, and so we can measure our performance against our peers and other organisations. We also use lead measures that give us an indication of how we might perform in future, which allows us to work on improvements.

Although our Total Recordable Case Frequency has again decreased, from 5.4 in 2004 to 3.8 in 2005, 90 people were injured in Woodside activities in 2005 with 21 of them requiring time off work. No fatalities occurred as a result of Woodside activities in 2005. We regret that a third party incurred a permanent disability (partial foot amputation) during activities on the quayside in Mauritania.
To help ensure our people return home safely at the end of each working day, Woodside started introducing a set of clear, simple Golden Safety Rules to staff and contractors in 2005. The rules cover nine areas where Woodside data, as well as statistics from the wider industry, indicate staff are at the highest risk of serious injury or death.

The rules do not cover all operational risks, nor are they meant to replace existing risk management processes that are required to be used by staff and contractors. However, they set a minimum standard for establishing a safe work environment, set clear expectations for safe behaviour, assist in creating a safety mindset and provide a checklist for ensuring safe behaviour.

The Golden Safety Rules cover the following activities:

- Electrical Isolation
- Working at Heights
- Lifting Operations
- Driving Safety
- Building and Office Safety
- Permit to Work
- Confined Space Entry
- Ground Disturbance
- Management of Change.

The Golden Safety Rules are mandatory for all staff and contractors.

In 2005, four of these rules were introduced and, although the program is in its early stages, a significant reduction in incidents in these activities has been recorded.

Case Study
Golden Safety Rules

Case Study
Libya Transport Safety

Land seismic operations can involve driving millions of kilometres. Driving is the single biggest contributor to fatalities in the oil and gas exploration and production sector. The environment in Libya offers many challenges, including driving on blacktop roads but also off-road in sand dunes and on gravel and djebel areas. Much of the driving is undertaken by contractors on behalf of Woodside.

Libyan operations implemented a focused initiative on land transport. This included specialised driver training, vehicle standards, HSE advisers and journey management. These initiatives produced a positive outcome. More than 5 million kilometres were driven in 2005 with 4.4 million related to seismic operations. There were no fatalities or serious injuries.

Case Study
Workforce Safety Management

The inaugural winner of the Woodside Health and Safety Award was the apprenticeship team at the Karratha Gas Plant. A mentoring program was put in place where senior apprentices helped guide less experienced apprentices who were more likely to be injured. In addition, improvements were made in the induction process, hazard reporting and awareness of potential dangers. The apprenticeship team has gone three years without an injury.

Our aspiration in safety is: “No one gets hurt, no incidents.” We believe that all injuries are preventable and we educate our people and model our behaviour accordingly.
Environment

We meet statutory requirements as a minimum, and in countries where no statutory requirements exist, we apply our own internal standards.
We are committed to protecting the environment as we manage our operations. The environment is one of our primary considerations when making business decisions.

We meet statutory requirements as a minimum, and in countries where no statutory requirements exist, we apply our own internal standards. As part of project development, we gather extensive data to help us understand the natural and cultural environment and provide input into our risk assessment.

We have set environmental standards and aspirations which provide an additional framework for our operations. The standards and aspirations focus on emissions to the air, discharges of liquid and solid waste and resource consumption. These provide minimum, acceptable performance levels and a vision of our performance. During 2005, we reviewed our standards and aspirations, and are currently undertaking a gap analysis to determine our compliance with these standards, and the actions required to improve our performance.

In Australia, we report against our regulatory obligations as required, and our emissions are reported to government authorities and the community. Woodside reports greenhouse gases according to its obligations under the Commonwealth Government’s voluntary Greenhouse Challenge Program (www.greenhouse.gov.au) and reports emissions to the National Pollutant Inventory, run by the Commonwealth Government’s Department of the Environment and Heritage (www.npi.gov.au). In our international operations, our performance against licence and permit conditions is reported to the relevant regulatory authorities.

We continue to support research initiatives aimed at improving our long-term environmental performance and at increasing our knowledge of the impacts at existing facilities. Current research initiatives include:

- The Cooperative Research Centre (CRC) for Greenhouse Gas Technologies, of which Woodside is a foundation sponsor. The CRC is the peak Australian body for research into carbon capture and storage technology.

- The North West Shelf Cumulative Impact study. A two-year study investigating the combined impacts associated with Woodside

- Cooperative research with several Australian universities and the National Oceanographic Centre (UK) to better understand impacts associated with offshore drilling activities.

- Co-funding of coral research with the Australian Institute of Marine Science within the marine bioregion of north-west Western Australia.

- Funding support for Deakin University studies into the diet and demographics of the Little Penguin population at Warrnambool in south-west Victoria.

- Studies on the status of deep sea corals off the coast of Mauritania, north-west Africa.

As well as having a focus on commitments to environmental protection in our new developments, we also continue to focus on the environmental performance of our ongoing operations. In most cases, the environmental performance data which follows shows amounts emitted (tonnes) or discharged (m3) and intensity. For example, the greenhouse gas emissions intensity is reported as tonnes of greenhouse gas per tonne of hydrocarbon production. The flared gas intensity measure is reported as tonnes of gas flared per kilotonne of hydrocarbon production.

There are several factors influencing trends in the intensity data subsequently presented. The first factor is a decline in oil production from both the Northern Endeavour and Legendre offshore facilities. These facilities generate relatively low emissions per tonne of production. A further factor is the increase in liquefied natural gas (LNG) production that has occurred at the Karratha Gas Plant. LNG production generates relatively high emissions per tonne of production. Offsetting these two factors is the improvement in efficiency (reduced emissions intensity) associated with the fourth LNG production train and other process improvements being implemented at the Karratha Gas Plant.
Greenhouse Gas Emissions

Key Measures
Community opinion accepts that greenhouse gases are contributing to global climate change – a phenomenon that contributes to serious and irreversible environmental damage.

We currently generate most of our greenhouse gases in the production of LNG at the Karratha Gas Plant.

Woodside’s key performance indicator for monitoring greenhouse gas emissions is the greenhouse emissions intensity, measured in tonnes of carbon dioxide equivalents (CO₂e) per tonne of hydrocarbon produced. We also monitor the total amount of greenhouse gas emissions in tonnes of CO₂e.

Woodside has already achieved significant emission reductions against business as usual projections and continues to invest in a number of abatement measures.

Woodside joined the Federal Government’s “Greenhouse Challenge” in 1997. Under the Greenhouse Challenge, Woodside has:
- Committed to investing A$211 million on technical abatement measures
- Identified a projected reduction in emissions of approximately 38 million tonnes CO₂e against “business as usual” between 2002 and 2022, and

Woodside is a foundation sponsor of the Cooperative Research Centre for Greenhouse Gas Technologies (CO₂CRC), formed in 2002. The CO₂CRC is the peak body for research into carbon capture and storage technology.

The sponsorship supports projects such as the first carbon dioxide geo-sequestration project in Australia, being conducted in the Otway Basin. The sponsorship demonstrates Woodside’s commitment to developing geo-sequestration and has given us substantial expertise in this area.

As our business and greenhouse emissions grow, further abatement action will be required. Woodside’s key priority is to reduce greenhouse emissions at source, either through energy efficiency improvements or sequestration technology solutions. Where this is not feasible we will seek to use greenhouse abatement from other sources as an offset for some of those emissions. In line with this strategy in 2005, we have designed gas re-injection as a key greenhouse abatement measure for our Vincent oil opportunity offshore from the North West Cape in Australia. This means that the operations will be able to abate associated gas generated during the production of oil and gas, which is consistent with our expectations under our environmental standard.

Further to this, in 2005, as part of our abatement strategy, Woodside purchased approximately 100,000 tonnes of Verified Emission Reduction Units (VERUs) through the Commonwealth Government’s Greenhouse Challenge Plus program, sourced mainly from landfill gas capture and avoidance projects. The VERUs will be progressively applied against selected emissions in Woodside’s Greenhouse Inventory.

Performance
Greenhouse gas emissions from Woodside’s operated ventures increased by 15% from 2004. Around 80% of this increase is attributed to increased fuel consumption and venting of reservoir carbon dioxide due to LNG Train 4 reaching full production in 2005. The remaining 20% was due to unplanned flaring, mainly as a result of an unplanned temporary stoppage of Train 4 at the Karratha Gas Plant.

At the same time, emission intensity from Woodside-operated ventures increased marginally to 0.25 tonnes of CO₂e per tonne of production in 2005, from 0.24 in 2004. This increase is attributed to increases in greenhouse intensity across several of Woodside’s major oil production facilities and the commencement of LNG production from Train 4 at the Karratha Gas Plant.

LNG production has higher greenhouse intensity than oil production, so increasing the proportion of LNG production relative to oil production results in a higher overall greenhouse intensity.
Flaring Intensity

Key Measures

In the oil and gas industry, gas is burned, or flared, to dispose of it safely and protect the integrity of the production process. Flaring generates greenhouse gas, visible black smoke (in some circumstances), particulates and relatively minor amounts of unburnt hydrocarbons.

Our operating facilities regularly set and review flare reduction targets to promote continuous improvement. We measure and track flared gas to ensure that it is as low as practicable, and implement alternative strategies, such as re-injection, wherever possible.

Performance

Flaring increased by 20% to 215,000 tonnes in 2005. The Karratha Gas Plant contributed 60% of total flared volumes in 2005, compared with 41% in 2004. The increase in flaring from Karratha Gas Plant was offset by a decrease in flaring from offshore facilities. Flaring from offshore facilities decreased 18% between 2004 and 2005 due to process changes, shutdowns on several facilities and decreased production at Legendre and Northern Endeavour.

The North West Shelf Venture’s commitment to minimising the greenhouse impact of its operations has been recognised with Australia’s top award for outstanding achievement in greenhouse gas abatement.

The Greenhouse Challenge Plus Large Business Award for Outstanding Achievement in Greenhouse Gas Abatement recognises the air emissions reduction project at the Karratha Gas Plant.

The project involved changing the solvent used for removing carbon dioxide from the gas. It will result in a saving of 7 million tonnes of carbon dioxide equivalent over the life of the project at a cost of A$26 million. The reduction is 8% of the Karratha Gas Plant’s greenhouse gas emissions.

Woodside and its venturers have previously won silver and bronze greenhouse awards for other emissions reduction projects at the Karratha Gas Plant and Cossack Pioneer FPSO.

The Greenhouse Challenge Plus Large Business Award for Outstanding Achievement in Greenhouse Gas Abatement recognises the air emissions reduction project at the Karratha Gas Plant.

The project involved changing the solvent used for removing carbon dioxide from the gas. It will result in a saving of 7 million tonnes of carbon dioxide equivalent over the life of the project at a cost of A$26 million. The reduction is 8% of the Karratha Gas Plant’s greenhouse gas emissions.

Woodside and its venturers have previously won silver and bronze greenhouse awards for other emissions reduction projects at the Karratha Gas Plant and Cossack Pioneer FPSO.
Energy Consumption

Key Measures

Natural gas is the principal fuel used to produce electricity or drive process equipment and represents more than 95% of the energy used by our operations. The majority of this fuel is consumed at the Karratha Gas Plant in the production of LNG.

LNG production requires significant amounts of energy due to the low temperatures required to liquefy the gas. Despite this, the use of LNG as an energy source produces significantly less greenhouse gas emissions on a lifecycle assessment basis than alternative fossil fuels. Many countries are investing in LNG infrastructure as part of their medium-term response to global warming.

The use of natural gas to fuel our operations generates the majority of Woodside’s air emissions. We use the terajoule as the unit of measure for energy. A terajoule is equivalent to the energy consumed by 18 typical Australian households in one year.

Woodside is a party to which the Australian Government’s Energy Efficiency Opportunities legislation applies because we use more than the 500 terajoules energy threshold per annum.

Performance

Woodside’s energy consumption increased by 16% in 2005, while energy intensity increased from 2.7 terajoules/kilotonne production in 2004, to 2.9 terajoules/kilotonne production in 2005.

While the increase in energy consumption is mostly due to commencement of operation of the LNG Train 4 at the Karratha Gas Plant, the increase in the energy intensity of production is also due to the effect of the maturing of the Legendre and Laminaria fields which requires more energy to extract the resource.

During work to increase capacity at North Rankin A (NRA) platform, Woodside also addressed the problem of hydrocarbon liquids accumulating in the glycol contactor. The liquids that collected here were required to be manually “skimmed” and then directed to the low pressure drain system via a ‘wet condensate vessel’. A consequence of this process was the necessity to flare the hydrocarbon liquids that were generated within the vessel and closed drain system, resulting in an estimated 1,700 tonnes per annum of additional flaring from NRA.

The NRA debottlenecking project developed an automatic skimming process that allowed the skimmed HC liquids to be re-routed directly into the export pipeline, eliminating the need for flaring.

Two additional benefits were obtained from this project, the first being a reduction in the discharge of glycol to the ocean. Previously it was difficult to judge when to start and stop skimming and glycol was routinely discharged into the drain system that ended up in the produced water released to the ocean.

The glycol discharged to the drain system also increased the potential for oil-in-water discharge exceedences. Reducing the glycol in the drains system has decreased the risk of an exceedence of the regulatory oil-in-water discharge limit.

The Woodside project team developed new technology and challenged the existing notion that automatic skimming could not be made to work. The outcome was a new approach that has proved to be highly successful.

This project was awarded the 2005 Woodside Environment Award.
Volatile Organic Compounds

Key Measures

Emissions of organic compounds from the oil and gas industry include the light and volatile hydrocarbons such as ethane, propane, benzene, hexane and toluene. These compounds, in addition to their potential environmental impacts, can also have long-term health implications for employees and the local community. We have conducted extensive monitoring at our North West Shelf facilities to ensure we comply with national and international air quality standards which protect human health and the environment.

During LNG production these compounds are vented to the atmosphere principally as gas during carbon dioxide removal. Minor amounts are also released as unburnt gas from flares, through compressor seal losses and as vapour that is emitted from diesel, condensate and crude oil storage tanks.

Performance

Volatile organic compound emissions from Woodside-operated ventures continued to fall during 2005 with a 20% reduction in emissions compared with 2004. This is primarily due to an improved solvent in the LNG carbon dioxide removal process at the Karratha Gas Plant. The solvent change-out is being implemented progressively through all production trains. LNG Trains 1, 3 and 4 are now using the new solvent with LNG Train 2 to convert in 2006. LNG Train 4 is able to achieve essentially zero emissions of volatile organic compounds.

Declining production from our Australian oil facilities, and the consequent drop in emissions from cargo tanks and ship-loading operations, has also contributed to the decrease in emissions.
Oxides of Nitrogen

Key Measures
Oxides of nitrogen (NOx) are emitted to the air as a consequence of the combustion of fuels such as natural gas and diesel.

At the Karratha Gas Plant, we have installed technology on LNG Train 4 designed to limit emissions of NOx to less than 70 milligrams per cubic metre, and have recorded levels of less than 30 milligrams per cubic metre. This compares with 180 to 240 milligrams per cubic metre on older gas turbines in the existing plant.

In 2004, we began a project to modify the combustion process technology on the majority of gas turbines at the Karratha Gas Plant which will decrease NOx emissions by 25% for each gas turbine. At the end of 2005, the project was approximately 50% completed and preliminary results show emission levels on modified machines have dropped by more than 25%. The project is scheduled for completion in 2007.

Performance
Our NOx emissions remained relatively constant between 2004 and 2005. While there was an increase in production in 2005, the expected increase in emissions have been offset by technological improvements to the Karratha Gas Plant.

Case Study
Karratha Gas Plant – NOx reduction

The start-up of the fourth LNG train at the Karratha Gas Plant in 2004 resulted in LNG production capacity increasing from 7.5 to 11.9 million tonnes per annum. With the fifth LNG train currently under construction LNG production will increase further to 16.3 million tonnes per annum in 2009.

The application of low NOx combustion technology to both the new LNG trains and the majority of the previously existing gas turbines will decrease NOx emissions, despite an increase in LNG production.

The combustion technology being retrofitted to the existing gas turbines is expected to achieve a 25% reduction in NOx emissions. While the technology is relatively simple, it requires a major shutdown of the gas turbine. Shutdowns are programmed to occur in line with the existing major maintenance schedule for the Karratha Gas Plant. The $6 million retrofitting program started in 2004 and will be completed in 2007. All but three of the existing 29 gas turbines will be fitted with the low NOx combustion technology. The technology being applied in the fourth and fifth LNG trains is more sophisticated and is able to achieve lower levels of NOx in the exhaust stream.

It is expected that even with the planned increase in production there will be a 15%, or 1,500 tonnes per annum, reduction in the NOx emissions from the Karratha Gas Plant as a consequence of the application of the low NOx technology to the new and existing gas turbines.

An environmental consequence of the NOx reduction program is a small reduction in the efficiency of the gas turbines. The additional fuel usage is expected to generate a minor (<1%) increase in greenhouse emissions.
Other Atmospheric Emissions

Oxides of Sulphur
Oxides of sulphur (SOx), are formed principally through the combustion of diesel fuel.

Woodside emitted approximately 500 tonnes of SOx in 2005, compared with approximately 350 tonnes in 2004. Most of these emissions are associated with offshore marine operations. The increase in SOx emissions in 2005 reflects an increase in offshore vessel activity associated with exploration and the support of existing offshore facilities.

Woodside aims to use low sulphur diesel where available, for both marine and land-based transport, to reduce emissions.

Ozone-Depleting Substances
Ozone-depleting substances are chemicals that, when released to the atmosphere, have the capacity to deplete ozone in the upper atmosphere.

In 2005, releases from our facilities were 70 kilograms, with most emissions resulting from leaks of the refrigerant gas R22 from heating, ventilation and air-conditioning systems at the Karratha Gas Plant. We expect these emissions to continue to decrease as the refurbishment of these systems is completed.

Hazardous and Non-Hazardous Waste

Key Measures
Waste is material that has no further use at our facilities. Waste is deemed to be hazardous if the material has inherent risks associated with health, safety or environmental considerations.

We track hazardous waste through to safe disposal. Non-hazardous waste is inert solid material suitable for direct disposal to landfill, or to be recycled, without special approval.

To maintain the focus on reducing our resource use and waste disposed to landfill, we aim to recycle as much material as possible, particularly where materials are a scarce and valuable resource.

Performance
Our North West Shelf operations produced 3,800 tonnes of hazardous waste and 2,800 tonnes of general solid in 2005. Most of this waste (75%) was generated from the Karratha Gas Plant.

Of this, we recycled 500 tonnes of hazardous waste and 380 tonnes of the general solid non-hazardous waste.

To maintain the focus on reducing our resource use and waste disposed to landfill, we aim to recycle as much material as possible.
Effluent Discharges

Key Measures
Our major offshore discharge is naturally occurring saline reservoir water, known as produced formation water, associated with oil and gas extracted from the reservoirs. During production, this water is separated from the oil and gas and treated before being discharged to the sea. To meet regulatory requirements we measure this effluent as “oily water discharge”.

We measure total volumes of oily water discharge in cubic metres and the amount of oil contained in that water in tonnes.

We do not intend to report other effluent discharges at this stage because these are minimal and we are confident that their environmental impact is negligible.

It is a requirement for all new opportunities to assess the environmental impacts of produced formation water discharges. Where discharges could reach sensitive environments, the base case for project development is zero produced formation water discharge to surface waters. The Enfield oil project, located off the North West Cape in Western Australia, has made a commitment to re-inject produced formation water.

Performance
As production from oil and gas reservoirs continues there is generally an increase in the amount of reservoir water, this is dependent on the nature of how the reservoir depletes. The volume of produced formation water increased from 6.7 million cubic metres in 2004, to 7.8 million cubic metres in 2005. This trend is expected to continue as our oil fields mature and produce more reservoir water and less oil.

While the volume of produced formation water has increased, the concentration of oil in the water discharged from our offshore facilities has remained relatively static, still well within the Australian regulatory requirement for oil concentration of 30 milligrams per litre.
Drilling Fluid Discharges

Key Measures

When drilling a well, rock fragments known as cuttings, are produced from the bore hole. These cuttings are mixed with drilling fluid, or ‘mud’, that is used to cool and lubricate the drill bit, to help remove the cuttings, and to safely manage reservoir pressures.

The toxicity of cuttings depends on whether water-based or non-water-based muds are used. Water-based muds have low toxicity and are routinely discharged at sea during drilling. Non-water-based muds that contain synthetic-based substances, such as esters or olefins, may have greater immediate impact and persist for longer in the environment.

In our operations, drill cuttings contaminated with non-water-based drilling fluid may be discharged to sea. Excess non-water-based drilling fluid is returned to shore for reconditioning and re-use or disposal.

Wherever possible we use only water-based drilling fluid unless technical reasons dictate the use of non-water-based fluid.

We measure in tonnes the amount of water-based and non-water-based drilling fluid that we discharge to the ocean. When drilling with non-water-based fluids we also measure "oil on cuttings" which is determined by sampling and measuring the weight of base fluid stuck to the cuttings.

Performance

In 2005, there was a significant increase in drilling activity in Australian and African waters due to an increase in Woodside’s exploration and production program which resulted in an associated increase in discharges to ocean.

Australian-based discharges to sea for 2005 were 40,100 tonnes of drilling fluid, 98% of which was water-based drilling fluid.

Drilling discharges in Mauritania were 32,700 tonnes of drilling fluid, 84% of which was water-based drilling fluid. The greater proportion of non-water-based muds used in Mauritania was due to more complicated, deeper wells, which also required more deviated drilling.

![Drilling Fluid Discharges 2001-2005](image)
Environmental Incidents

Key Measures
Woodside has a comprehensive health, safety and environment incident reporting and investigation process that is designed to ensure we understand why incidents happen and to learn from them.

We classify reportable environmental incidents into three categories: “exceedences of oil-in-water concentration”, “oil spills” and “other”.

Exceedences of oil-in-water concentration applies to offshore facilities that have discharged produced formation water containing an average of more than 30 milligrams per litre of oil over 24 hours, or an instantaneous concentration greater than 50 milligrams per litre, the 2005 regulatory limits for Australian operations. These incidents typically occur for short periods.

“Oil spills” refers to the inadvertent spillage of hydrocarbons from exploration and production activities, either at sea or on land. For offshore operations, any oil spill of 80 litres or greater must be reported to the regulator.

“Other” principally refers to the spillage of (non-hydrocarbon) chemicals or non-compliance with regulations, approvals or licence conditions.

We measure “reportable environmental incidents” as a key indicator of our performance. All of these incidents are reported to the appropriate government and regulatory authorities.

Performance
Woodside had 28 reportable environmental incidents in 2005, an increase from 14 reportable environmental incidents in 2004.

Of the 28 incidents in 2005, 11 were instantaneous exceedences of the oil-in-water limits associated with produced formation water discharges from offshore facilities. These occurred during process upsets, production shutdowns or start-ups.

Regrettably, we had nine reportable oil spills, totalling 163 cubic metres in 2005.

The largest spill occurred in January 2005 in the Laminaria field. The estimate of the maximum volume spilled was 135 cubic metres of Laminaria crude and 26 cubic metres of diesel.

Both Laminaria crude and diesel are very light oils and evaporate rapidly from the sea surface. Residual oil dissipates through evaporation, dissolution into the water column, biodegradation and photo-oxidation over a period of days. This is aided by the warm tropical conditions. Environmental surveys and observations were conducted subsequent to the incident, including adjacent to the source of the leak with no environmental impact observable.

A supply vessel identified the source of the leak to be in the area of the Laminaria Central Manifold. The Laminaria wells were immediately shut in and the leak subsided.

The source was identified as a failure in a flexible flowline on the seabed, adjacent to the Laminaria Central Manifold. The flowline had been flowing for 24.5 hours before being shut in. The estimated spill volume was 135 cubic metres of Laminaria crude and 26 cubic metres of diesel.

Both Laminaria crude and diesel are very light oils and evaporate rapidly from the sea surface. Residual oil dissipates through evaporation, dissolution into the water column, biodegradation and photo-oxidation over a period of days. This is aided by the warm tropical conditions. Environmental surveys and observations were conducted subsequent to the incident, including adjacent to the source of the leak with no environmental impact observable.

The flowline was recovered from the seabed in December and has been sent to the manufacturer for technical analysis to determine the cause of failure. Following the analysis, appropriate actions will be developed to prevent a recurrence.

In the interim, actions have already been taken based on potential cause, these include process control, review of flowline manufacture quality, increased surveillance and upgrade of design specification for future projects.
Case Study
North West Shelf Cumulative Environmental Impact Study

The NWS Cumulative Environmental Impact Study started in 2005 and is due to be completed in 2006. The study considers the effects of past, present and credible scenarios for future NWS operations on the marine, air, land environments.

The study also considers Woodside’s activities in the context of other industry in the area, and whether there is potential for the separate effects to interact. The study is managed on behalf of Woodside by an external independent consultancy, with the Commonwealth Scientific and Industrial Research Organisation as peer-reviewers.

The study is being completed in four phases. Phase 1 is nearing completion, and consists of data gathering within Woodside and other industry and scientific agencies, a risk assessment, and identification of knowledge gaps that need to be addressed. Phase 2 started in March 2006 and consists of field work plans, sampling in the field, laboratory analysis of samples, desktop scientific studies and computer modelling of offshore discharges and air quality. Phase 3 will consist of examining, analysing and interpreting all the data gathered. Phase 4 will be a formal report to Woodside. All phases of the study are being overseen by an independent panel of scientific experts. The study is costing approximately A$1.2 million.

Case Study
SERPENT Project

To assist in gaining a greater understanding of the deep sea environment in which we operate as well as provide more detailed information on how our activities may potentially impact on that environment, Woodside has become involved in an innovative scientific project known as SERPENT (Scientific and Environmental ROV Partnership using Existing Industrial Technology). Through this partnership with SERPENT, Woodside is working with several Australian universities (headed by the University of Sydney) and the Deep Seas Group at the National Oceanography Centre in Southampton, UK.

To date, the work as part of SERPENT has focused on Woodside’s Enfield Development off the North West Cape of Western Australia, however, work is also being conducted at Pluto, Browse and in Mauritania.

On Enfield, a remotely operated vehicle has been used at each of the drilling locations to collect video footage which provides information on biodiversity and drill cuttings. In addition, Honours students from the University of Sydney have been conducting experiments on biological stress and the impacts of physical disturbance. Opportunistic sightings and recordings of various species have also been collected.

Once more information is collected and analysed it is intended that the results of the research will be published in peer reviewed journals, however, information on the work currently being conducted can be accessed on the SERPENT website www.serpentproject.com.
While our presence helps to generate economic benefits for the regions in which we operate, we are committed to helping communities to grow and develop.
Community
Wherever we operate, we want to be a part of the community.

While our presence helps to generate economic benefits for the regions in which we operate, we are committed to helping communities to grow and develop. Through a range of activities and support programs we seek to add value to the social, cultural and economic fabric of these communities.

Stakeholder engagement
Woodside communicates openly with local communities where we operate, including traditional landowners and other local and international stakeholders. We seek community views and respond to concerns. This gives people confidence in our operations and also helps us to identify ways to support communities beyond our normal economic activity.

Stakeholder engagement begins during the planning of projects and continues during construction and operations, and through to decommissioning.

In Australia’s south-east, Woodside has worked with a community reference group involving the local shire, environment groups, regulatory authorities and local community members to help manage construction of our Otway Gas Project in Victoria. People may attend monthly meetings of the reference group or use a free-call number to share their views and opinions on the project. These strong communication links will be maintained as the project moves into operation in mid-2006.

At the North West Shelf Venture in Karratha in the north-west of Western Australia, regular dialogue between Woodside and the Shire of Roebourne and a community liaison group has helped to identify local social and economic pressures. Woodside has responded by establishing a Social Sustainability Fund with our joint ventures to address issues such as child care and indigenous employment.

Woodside has also led extensive community and stakeholder consultation in Karratha, Onslow and Perth for our proposed Pluto LNG development in the north-west of Western Australia.

In Exmouth, regular communication with the local shire, indigenous groups, non-government organisations and two community reference groups has helped to identify key issues around emergency response capability, marine environment protection and community development as we progress the Enfield oil project.

Woodside ran a major emergency response training exercise with external agencies which provided reassurance to the community about our capability to operate the Enfield project. Work in 2006 will progress a proposed Ningaloo Ocean and Earth Research Centre to understand and promote the region’s unique marine environment.

For our Chinguetti oil project, the first major extractive industries project in the West African nation of Mauritania, Woodside has engaged domestic and international stakeholders in environmental and social impact studies. In Libya, we have completed comprehensive environmental impact assessments of our onshore and offshore seismic programs in preparation for drilling campaigns scheduled for 2006. These studies have contributed significantly to scientific knowledge of Libya’s natural and archaeological environment.

In the US, Woodside is engaging environmental and community advocacy groups as part of our plans to export LNG to California.

A part of the community
Throughout 2005, Woodside worked with a diverse range of international community partners to deliver better social, environmental and cultural opportunities.

Woodside was one of the first Australian companies to respond to the Asian tsunami disaster with a $250,000 donation to Care Australia. Our staff and contractors donated an additional $120,000 which was distributed to Care Australia, Oxfam Australia, World Vision Australia and the Australian Red Cross. Later in the year Woodside matched staff and contractor contributions to the Hurricane Katrina relief effort, providing $50,000 to affected communities in the US.

A workplace giving program was introduced in 2005 to allow Woodside staff to donate to approved charities through regular pre-tax payroll deductions.

Woodside staff are encouraged to volunteer for local community-based activities such as working bees at aged care homes, environmental projects and blood bank donation runs. Through our Community Partnerships program, Woodside helped more than 60 community groups to achieve their goals in 2005.

In Western Australia, new partnerships in 2005 have helped the David Wirrpunda Foundation to assist indigenous youth and the Multiple Sclerosis Society of Western Australia to develop camps to help children of sufferers of the disease.

In Victoria, we have helped the City of Warrnambool to begin construction of the Brophy Family Community and Youth Complex and establish satellite enterprise youth projects throughout the south-west region including Port Campbell.

Our Australian program has retained a strong focus on providing opportunities for young Australians with support for groups such as Youth Focus (for the prevention of youth suicide), the Art Gallery of Western Australia (for the Year 12 Youth Perspectives exhibition), the Passages Resource Centre (for homeless youth) and the Western Australia Youth Orchestra.

Woodside also has worked with our community partners to bring sporting and cultural events to the Pilbara region of Western Australia.

In 2005 our corporate citizenship took on a greater international focus with development of a coordinated program of activities in Mauritania and Libya.

In Mauritania, we are working with respected aid organisations, such as the United Nations Development Program, to deliver social development projects. We have also funded a schools information program to help build knowledge within Mauritanian society of how the oil industry operates. A copy of our Draft Social Impact Assessment for the Chinguetti project is on the Woodside website.

In 2006, our efforts in Mauritania will be expanded in response to the findings of the social impact assessment.

In Libya, we have begun a program of university scholarships and academic exchanges where Libyan students are being invited to Perth to study at Murdoch University and academics from Murdoch and Curtin University are visiting Libya to share their expertise.

From 2006 we will publish information relating to our community partnerships, on our company web site.
Local benefits

Wherever Woodside operates it seeks to maximise economic benefits for local communities through employment, training and support of local businesses.

In Libya, more than 60% of our permanent staff in 2005 were Libyan nationals and we have a target of more than 70% in 2006. To secure this result, Woodside has invested heavily in technical and non-technical training, English language courses and a graduate program.

In Mauritania, the Chinguetti oil project social impact assessment has helped to identify local recruitment as a top priority to ensure the community benefits from our presence. During 2005, nearly 70% of people employed in onshore roles by Woodside and its contractors were Mauritanian. With further training we will steadily increase the employment of Mauritanians and the complexity of their roles. An investment of about US$6 million over 28 months will help to facilitate nationalisation of the crew of the Chinguetti oil project’s floating production, storage and offloading facility, Berge Helene.

Woodside has also helped the Mauritanian Government to develop skills for its public officials to effectively administer a modern oil and gas industry on behalf of its people.

All Woodside policies are available in English, French and Arabic to ensure our high standards are maintained wherever we operate. Cultural awareness and language training are also provided for Woodside staff.

Ethical behaviour

The general community expects honest and ethical behaviour from the corporate sector. We are committed to high standards of ethical behaviour in all of our dealings.

In 2005, the Woodside Corporate Code of Conduct was updated and distributed to all Woodside staff. We also continued a major training program on business conduct to reinforce the code’s standards for all Woodside staff.

Regular training on business conduct and ethics continues across Woodside and all new staff are given the code as part of their induction.

Transparency

In 2005 Woodside signed two key international initiatives to promote transparency in the reporting of payments to governments.

The Extractive Industries Transparency Initiative and the World Economic Forum’s Partnership Against Corruption Initiative will play major roles in ensuring that the people of developing nations share fully in benefits which flow from their oil and gas resources.

Further work in Woodside in 2006 will develop reporting processes to meet the expectations of these initiatives.

Sustainability

In 2005, Woodside again participated in the global Dow Jones Sustainability Index survey which assesses the sustainability of companies across more than 100 aspects of their operations.

Woodside scored above industry average results in the three key sustainability sectors – economic, social and environmental. Of the 38 oil and gas producers across the world assessed in the 2005 index, Woodside was ranked sixth, with only the top 10 meriting inclusion in the index.

Woodside’s Sponsorship and Donations Spend %

<table>
<thead>
<tr>
<th>Category</th>
<th>Spend %</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMUNITY SERVICES</td>
<td>19.7</td>
</tr>
<tr>
<td>EDUCATION</td>
<td>18.5</td>
</tr>
<tr>
<td>YOUTH</td>
<td>17.1</td>
</tr>
<tr>
<td>COMMUNITY HEALTH</td>
<td>15.5</td>
</tr>
<tr>
<td>ARTS</td>
<td>14.8</td>
</tr>
<tr>
<td>MEDICAL RESEARCH</td>
<td>8.6</td>
</tr>
<tr>
<td>ENVIRONMENT</td>
<td>4.5</td>
</tr>
<tr>
<td>OTHER</td>
<td>1.3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>
Woodside is supporting several initiatives to alleviate Australia’s current skills shortage with activities across age groups aimed at strengthening our industry’s technical skills base.

Our strategy begins in our high schools where initiatives are aimed at building awareness among students of our industry and its employment opportunities. Woodside has been a long-term supporter of the West Australian Petroleum Club’s Schools Information Program which introduces year 10 students to our industry and explains the important role we play in supplying energy. In 2005, Woodside has helped to expand the program to specifically target schools with high indigenous student populations to help increase the number of indigenous students who go on to work in our industry.

Through our links with The University of Western Australia and Murdoch University, Woodside provides funding for a summer engineering camp and a program where university engineering students mentor high school students who have shown an interest in science and engineering. The approach is paying off with two out of every three students from the engineering camp going on to enrol at The University of Western Australia, with one in three enrolling in engineering, computing or mathematics.

Woodside also invests heavily in higher education through research funding. Through its support of the Western Australia Energy Research Alliance, Woodside provides up to A$5 million a year towards a world-class energy research centre. This centre brings together experts from The University of Western Australia, the Commonwealth Scientific and Industrial Research Organisation and Curtin University. Woodside’s support will help to build Perth’s profile as a centre for excellence in oil-and gas-related research, drawing the best academics and students from around the world.

In 2005, Woodside made an initial investment of A$250,000 to help establish a national system of safety induction training centres run through Australia’s technical and further education system. This investment is designed to improve the mobility of skilled workers within our industry while raising safety standards and reducing costs.

Indigenous Community in the Pilbara

Introduction
Woodside takes a long-term, sustainable approach to its indigenous affairs activities in the Pilbara Region of Western Australia.

In Australia, we tend to operate in remote places away from major capital cities, where indigenous populations are large and increasing the number of skilled local workers can reduce staff turnover and decrease the transaction costs associated with relocating staff from capital cities.

We focus our efforts in three key areas:
1. Employment
2. Enterprise Development
3. Education and Capacity Building.

Employment
In framing our approach to this area, we choose to look beyond the immediate employment opportunities we can offer within our facilities. While a job with Woodside provides a significant benefit to the community not everyone in the indigenous community is able to take advantage of these opportunities.

Further, we are aware that the community has priorities other than working for Woodside.

We realise that assisting a member of the indigenous community to break the cycle of long-term unemployment by providing a job is a success in itself — regardless of whether the job is with Woodside or not. Woodside has established a community-based employment and training program that facilitates indigenous people into employment outcomes that are relevant to them and the community in which they live.

At the end of 2005, Woodside employed full time 23 indigenous people, an increase of 21 compared with December 2004. A further 16 were participating in training programs.
Case Study: Community-based Employment and Training Program

In 2004 Woodside agreed with the Ngarluma and Yindjibarndi Foundation in Roebourne to change the focus of the Warrgamugardi Yirdiyaburra Project away from training people to work for industry to a program that trained people to work within the community. The project now funds the training of four people in Roebourne who are aiming to work in a variety of positions within the community.

The two primary benefits arising from the change in direction for the Warrgamugardi Yirdiyaburra Project are firstly the creation of employment opportunities for people within the community who might not otherwise have the education and desire to work in a gas plant environment. Secondly, by assisting indigenous people into jobs within the community it raises the level of community capacity, increases the self-esteem of individuals and establishes role models that serve to instil a culture of work in younger generations.

In keeping with the community orientation of the program, Woodside intends to divest the management of the program to the community itself. Over the next twelve months the Ngarluma and Yindjibarndi Foundation will take up management responsibility for the program. This will in itself raise the capacity of the community and further empower them to make their own choices about training and employment priorities for the Roebourne community.

Case Study: Indigenous Culture Programs

Woodside understands that indigenous art and culture needs to be preserved for its own sake as a unique part of the cultural fabric of Australia, but we also share a vision with the community that a small but sustainable industry can be developed from it that will provide economic opportunity long after Woodside leaves the region.

The culture, language and art of the indigenous people of the Pilbara is unique and provides the foundation for an enterprise that can grow and be sustained independent of Woodside’s operations. Partnerships have been formed with Roebourne Art Group and Juluwarlu Aboriginal Corporation with the aim of establishing a base for the development of an art-and culture-based economy.

Roebourne Art Group (RAG) is an umbrella organisation for the four independent art programs in the region. RAG is focused on developing and promoting visual arts. It has recently gained some international recognition with an exhibition in Florence, Italy.

Juluwarlu Aboriginal Corporation is a small community organisation devoted to the collection and preservation of oral history and languages from the West Pilbara. With Woodside’s assistance it has established an indigenous language TV station in Roebourne – JTV. This now broadcasts indigenous language programs and documentaries on local community activities. In time they hope to attract mainstream funding through the provision of commercial services to the media industry in the Pilbara.
<table>
<thead>
<tr>
<th>Environmental Performance Indicators</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbon Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hydrocarbon Production (t)</td>
<td>29,748,765</td>
<td>29,830,965</td>
<td>28,064,222</td>
<td>26,064,435</td>
<td>28,311,655</td>
</tr>
<tr>
<td>Woodside Portion of Hydrocarbon Production (t)</td>
<td>8,393,734</td>
<td>8,204,809</td>
<td>7,264,840</td>
<td>6,548,403</td>
<td>6,790,704</td>
</tr>
<tr>
<td>Greenhouse Gas Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total CO₂ equivalent (t)</td>
<td>6,439,193</td>
<td>5,597,200</td>
<td>5,617,761</td>
<td>6,179,542</td>
<td>7,169,042</td>
</tr>
<tr>
<td>Woodside Portion of CO₂ equivalent (t)</td>
<td>1,451,830</td>
<td>1,185,200</td>
<td>1,232,368</td>
<td>1,324,184</td>
<td>1,577,090</td>
</tr>
<tr>
<td>Intensity (CO₂ e (t) per kt of Hydrocarbon Production)</td>
<td>0.22</td>
<td>0.19</td>
<td>0.20</td>
<td>0.24</td>
<td>0.25</td>
</tr>
<tr>
<td>Flared Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Flared Gas (t)</td>
<td>217,517</td>
<td>133,082</td>
<td>132,013</td>
<td>179,083</td>
<td>215,365</td>
</tr>
<tr>
<td>Woodside Portion of Flared Gas (t)</td>
<td>84,561</td>
<td>47,098</td>
<td>46,822</td>
<td>81,011</td>
<td>8,021</td>
</tr>
<tr>
<td>Intensity (Flared Gas (t) per kt of Hydrocarbon Production)</td>
<td>7.3</td>
<td>4.5</td>
<td>4.7</td>
<td>6.9</td>
<td>7.6</td>
</tr>
<tr>
<td>Volatile Organic Compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total VOCs (t)</td>
<td>65,755</td>
<td>48,033</td>
<td>47,268</td>
<td>46,448</td>
<td>37,150</td>
</tr>
<tr>
<td>Woodside Portion of VOCs (t)</td>
<td>13,713</td>
<td>10,281</td>
<td>9,350</td>
<td>8,821</td>
<td>6,833</td>
</tr>
<tr>
<td>Intensity (VOC Emissions (t) per kt of Hydrocarbon Production)</td>
<td>2.2</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.3</td>
</tr>
<tr>
<td>Oxides of Nitrogen Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total NOx Emissions (t)</td>
<td>13,174</td>
<td>13,958</td>
<td>15,400</td>
<td>16,171</td>
<td>16,341</td>
</tr>
<tr>
<td>Woodside Portion of NOx Emissions (t)</td>
<td>2,840</td>
<td>3,005</td>
<td>3,282</td>
<td>3,417</td>
<td>3,433</td>
</tr>
<tr>
<td>Intensity (NOx Emissions (t) per kt of Hydrocarbon Production)</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Oxides of Sulphur Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total SDx Emissions (t)</td>
<td>214</td>
<td>173</td>
<td>276</td>
<td>357</td>
<td>552</td>
</tr>
<tr>
<td>Woodside Portion of SDx Emissions (t)</td>
<td>41</td>
<td>32</td>
<td>50</td>
<td>70</td>
<td>97</td>
</tr>
<tr>
<td>Ozone Depleting Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total CFC11 equivalent (t)</td>
<td>0.16</td>
<td>0.16</td>
<td>0.12</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>Woodside Portion of CFC11 equivalent (t)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Energy Consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Energy Consumption (TJ)</td>
<td>60,593</td>
<td>60,186</td>
<td>61,558</td>
<td>70,338</td>
<td>81,923</td>
</tr>
<tr>
<td>Woodside Portion of Energy Consumption (TJ)</td>
<td>12,885</td>
<td>12,905</td>
<td>13,121</td>
<td>14,802</td>
<td>17,052</td>
</tr>
<tr>
<td>Intensity (Energy Consumption (TJ) per kt of Hydrocarbon Production)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.2</td>
<td>2.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Oily Water Discharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Volume of Oily Water Discharged (m³)</td>
<td>2,851,442</td>
<td>4,848,348</td>
<td>8,447,834</td>
<td>8,749,291</td>
<td>7,778,481</td>
</tr>
<tr>
<td>Woodside Portion of Oily Water Discharged (m³)</td>
<td>1,101,882</td>
<td>2,095,450</td>
<td>2,858,479</td>
<td>2,938,027</td>
<td>3,327,292</td>
</tr>
<tr>
<td>Total Oil Load in Discharge Water (t)</td>
<td>48</td>
<td>52</td>
<td>45</td>
<td>67</td>
<td>76.51</td>
</tr>
<tr>
<td>Woodside Portion of Oil Load in Discharge Water (t)</td>
<td>18</td>
<td>22</td>
<td>18</td>
<td>26</td>
<td>30</td>
</tr>
<tr>
<td>Average Oil-in-Water concentration (mg/L) (Offshore Facilities)</td>
<td>16</td>
<td>11</td>
<td>7</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Environmental Performance Indicators

Drilling Fluid Discharge

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Drilling Fluid Discharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water-Based Fluid (t)</td>
<td>33,912</td>
<td>25,130</td>
<td>18,929</td>
<td>16,273</td>
<td>67,043</td>
</tr>
<tr>
<td>Non-Water-Based Fluid (t)</td>
<td>2,482</td>
<td>633</td>
<td>1,128</td>
<td>1,183</td>
<td>5,863</td>
</tr>
<tr>
<td>Number of Wells drilled</td>
<td>19</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>39</td>
</tr>
</tbody>
</table>

Waste Performance

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid and hazardous waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total disposed waste (t)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>3,504</td>
<td>3,383</td>
</tr>
<tr>
<td>Total recycled waste (t)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>141</td>
<td>496</td>
</tr>
<tr>
<td>Solid non-hazardous waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total disposed waste (t)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>782</td>
<td>2,601</td>
</tr>
<tr>
<td>Total recycled waste (t)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>293</td>
<td>381</td>
</tr>
</tbody>
</table>

Reportable Environmental Incidents

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of incidents</td>
<td>46</td>
<td>38</td>
<td>45</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Number of Oil-in-Water concentration exceedences</td>
<td>40</td>
<td>34</td>
<td>39</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Number of Oil Spills</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Number of Other</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Fines

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Environmental fines and penalties</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Total Hydrocarbon production includes liquid and gas products that are exported (sold) and gas used as fuel.

*The total hydrocarbon production figures are modified from the previous report due to changes in the calculation method.

* Re-injection and recycled gas are excluded as per above note.
Recent Reports and Publications

Further Reading

Woodside Health, Safety and Environmental Policies (www.woodside.com.au)