PIPELINE

- POTENTIAL ROUTE

BATHYMETRY (water depth and seabed stability)

RISKS (including earthquake risks)

Geotechnical Aspects of Timor Trough and pipeline

Data Sources: Onshore Topography from NASA SRTM

Offshore bathymetry: Yellow = GGS survey, Red = Geoscience Australia compilation (less 16/12/2000 urate) Infill bathymetry from Satellite gravity and digitised general hydrographic contours (least accurate)

Sunrise Field is adjacent to the DEEPEST segment of the Timor Trough – 3300-3350 metres deep 16/12/2007 Slide 3 The Trough MAY be shallower to the East, but there is limited data and territorial issues

Length scale Arbitrary

Image contains some local data and gridding artefacts $_{\mbox{\scriptsize 16/12/2007}}$

Pipeline Route will cross near deepest part of Trough and over steep slopes. $^{\rm 16/12/2007}$

Sunrise Field is adjacent to major faults and topography at seabed, so pipeline routing WILL be affected

Bathymetric profiles across and along Trough

Pipeline Crossing - How Steep?

Example Seismic Profile

Landfall Area – How Steep?

Sunrise Area – How Steep?

TROUGH AXIS – How Deep?

EARTHQUAKE RISK

Seismic gaps may either be future major fractures, or could be geologically quiet. A major seismic quiet zone accomodates our pipeline route

Seismic Hazards

Recommended next steps – 1) Confirm end points of pipeline route (\pm 5 km)

- Define landfall zone and range of ontions for compressor platform location

Recommended next steps – 2) acquire ~ 1km spaced bathymetry profiles in 20 km wide belt

Recommended next steps – 3) Use 1km profiles to define area for detailed swath bathymetry

- Bathymetry database needs further work
- The final map will change in detail but a DEEP crossing is inevitable (likely ~3075 m)
- Beware of artefacts in the database and grid some features are NOT real
- There are many recent (possibly active) faults at seabed.
 These are very high risk zones and should be avoided if possible

Next steps:

- Incorporate additional seismic and other bathymetry
- Update Earthquake and seabed risk maps
- Refine locations of pipeline end-points
- Acquire ~1 km-spaced bathymetry profiles
- Interpret and map new data and define broad pipeline corridor
- Acquire swath bathymetry over corridor (needs specialised vessel)
- Geotechnical interpretation of pipeline route